https://nova.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Comparison of two transmission electron microscopy methods to visualize drug-induced alterations of gram-negative bacterial morphology https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:45054 Escherichia coli and Pseudomonas aeruginosa, with a clear delineation of the outer and inner membrane as well as the peptidoglycan layer. We suggest that the use of ultrathin cryo-sectioning can be used to better visualize and understand drug interaction mechanisms on the bacterial cell membrane.]]> Wed 26 Oct 2022 11:36:12 AEDT ]]> In vitro activity of robenidine analog NCL195 in combination with outer membrane permeabilizers against gram-negative bacterial pathogens and impact on systemic gram-positive bacterial infection in mice https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:40008 Enterococcus faecalis/faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Enterobacte spp.), have become a public health threat worldwide. Development of new antimicrobial classes and the use of drugs in combination are potential strategies to treat MDR ESKAPE pathogen infections and promote optimal antimicrobial stewardship. Here, the in vitro antimicrobial activity of robenidine analog NCL195 alone or in combination with different concentrations of three outer membrane permeabilizers [ethylenediaminetetraacetic acid (EDTA), polymyxin B nonapeptide (PMBN), and polymyxin B (PMB)] was further evaluated against clinical isolates and reference strains of key Gram-negative bacteria. NCL195 alone was bactericidal against Neisseria meningitidis and Neisseria gonorrhoeae (MIC/MBC = 32 μg/mL) and demonstrated synergistic activity against P. aeruginosa, E. coli, K. pneumoniae, and Enterobacter spp. strains in the presence of subinhibitory concentrations of EDTA, PMBN, or PMB. The additive and/or synergistic effects of NCL195 in combination with EDTA, PMBN, or PMB are promising developments for a new chemical class scaffold to treat Gram-negative infections. Tokuyasu cryo ultramicrotomy was used to visualize the effect of NCL195 on bioluminescent S. aureus membrane morphology. Additionally, NCL195’s favorable pharmacokinetic and pharmacodynamic profile was further explored in in vivo safety studies in mice and preliminary efficacy studies against Gram-positive bacteria. Mice administered two doses of NCL195 (50 mg/kg) by the intraperitoneal (IP) route 4 h apart showed no adverse clinical effects and no observable histological effects in major organs. In bioluminescent Streptococcus pneumoniae and S. aureus murine sepsis challenge models, mice that received two 50 mg/kg doses of NCL195 4 or 6 h apart exhibited significantly reduced bacterial loads and longer survival times than untreated mice. However, further medicinal chemistry and pharmaceutical development to improve potency, solubility, and selectivity is required before efficacy testing in Gram-negative infection models.]]> Wed 06 Jul 2022 11:20:52 AEST ]]> Robenidine analogues as gram-positive antibacterial agents https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:30033 1 (2,2′-bis[(4-chlorophenyl)methylene]carbonimidic dihydrazide), was active against MRSA and VRE with MIC’s of 8.1 and 4.7 μM, respectively. SAR revealed tolerance for 4-Cl isosteres with 4-F (8), 3-F (9), 3-CH₃ (22), and 4-C(CH₃)₃ (27) (23.7–71 μM) and with 3-Cl (3), 4-CH₃ (21), and 4-CH(CH₃)₂ (26) (8.1–13.0 μM). Imine carbon alkylation identified a methyl/ethyl binding pocket that also accommodated a CH₂OH moiety (75; 2,2′-bis[1-(4-chlorophenyl)-2-hydroxyethylidene]carbonimidic dihydrazide). Analogues 1, 27 (2,2′-bis{[4-(1,1-dimethylethyl)phenyl]methylene}carbonimidic dihydrazide), and 69 (2,2′-bis[1-(4-chlorophenyl)ethylidene]carbonimidic dihydrazide hydrochloride) were active against 24 clinical MRSA and MSSA isolates. No dose-limiting cytotoxicity at ≥2× MIC or hemolysis at ≥8× MIC was observed. Polymyxin B addition engendered Escherichia coli and Pseudomonas aeruginosa Gram-negative activity MIC’s of 4.2–21.6 μM. 1 and 75 displayed excellent microsomal stability, intrinsic clearance, and hepatic extraction ratios with T1/2 > 247 min, CLint < 7 μL/min/mg protein, and EH < 0.22 in both human and mouse liposomes for 1 and in human liposomes for 75.]]> Wed 02 Mar 2022 14:27:39 AEDT ]]> Impact of a Novel Anticoccidial Analogue on Systemic Staphylococcus aureus Infection in a Bioluminescent Mouse Model https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:45380 Thu 27 Oct 2022 15:58:15 AEDT ]]> Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:31422 E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less cytotoxic to mammalian cell lines than the parent compound, showed low metabolic degradation rates by human and mouse liver microsomes, and exhibited high plasma concentration and low plasma clearance rates in mice. NCL195 was bactericidal against Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a new chemical lead for further medicinal chemistry and pharmaceutical development to enhance potency, solubility and selectivity against serious bacterial pathogens.]]> Thu 09 Dec 2021 11:03:31 AEDT ]]> Gram-Positive and Gram-Negative Antibiotic Activity of Asymmetric and Monomeric Robenidine Analogues https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:44889 N′,2-bis((E)-4-chlorobenzylidene)hydrazine-1-carboximidhydrazide) and the introduction of imine alkyl substituents gave good antibiotic activity. Of note was the increased potency of two analogues against vancomycin-resistant Enterococci (VRE), one of which returned a MIC of 0.5 μg mL−1. Five analogues were found to be equipotent or more potent than the lead 1. Introduction of an indole moiety resulted in the most active robenidine analogue against methicillin-resistant S. aureus (MRSA), with a MIC of 1.0 μg mL−1. Imine C=NH isosteres (C=O/C=S) were inactive. Monomeric analogues were 16–64 μg mL−1 active against MRSA and VRE. An analogue that lacks the terminal hydrazide NH moiety showed modest Gram-negative activity at 64 μg mL−1. A 4-tert-butyl analogue was shown to be active against both Gram-positive and -negative strains at 16–64 μg mL−1. In general, additional modifications with aromatic moieties was poorly tolerated, except with concomitant introduction of an imine C-alkyl group. The activity of these analogues against MRSA and VRE ranged from 8 μg mL−1 to inactive (MIC>128 μg mL−1) with the naphthyl and indole analogues. Gram-negative activity was most promising with two compounds at 16 μg mL−1 against E. coli. Against P. aeruginosa, the highest activity observed was with MIC values of 32 μg mL−1 with another two analogues. Combined, these findings support the further development of the (E)-2-benzylidenehydrazine-1-carboximidamide scaffold as a promising scaffold for the development of antibiotics against Gram-positive and Gram-negative strains.]]> Mon 24 Oct 2022 14:46:25 AEDT ]]>